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Phase Transition for Ising Frustration Potentials

A. Siité!

Received August 17, 1979

A frustration potential is a sum of interactions the terms of which are not
simultaneously minimized even in the ground-state spin configurations. Ising
models with such potentials can be discussed by the use of contours. The Peierls
condition for the phase transition can be properly generalized, taking into account
the presence of zero-energy contours. Frustration has some special features in two
dimensions, which we study in detail. The connection with models of spin-glasses is
discussed.
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1. INTRODUCTION

The Peierls argument? for the existence of a phase transition was originally
elaborated for the two-dimensional Ising model ; however, it proved to be very
useful in many other cases. The most successful generalization was made by
Pirogov and Sinai'® a few years ago. By applying a suitably modified
definition for the contours which played a key role in the Peierls argument,
they proved the Gibbs phase rule for a large class of classical lattice systems.
Their results follow from the so-called Peierls condition imposed on the
contours, requiring that the energy of a contour is proportional to the measure
of its extension over the lattice (its length, so to speak). In order to carry
through their treatment they had to confine themselves to the study of models
with periodic, finite-range potentials and a finite number of periodic ground
states. However, it is easy to construct interactions for classical finite-
component lattice gases (spins taking up a finite number of different values) to
which there exist infinitely many ground states. For instance, such a model
emerged in the Reggeon field theory and was proven to undergo a phase
transition.'® There is also a wide family of lattice systems called ““frustration
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204 A. Sité

models” in the present physics literature > ; we are going to discuss these in
this work.

Consider a lattice Z with Ising spin configurations se %, s:Z— {—1, 1}.
Suppose we are given a neatest neighbor potential with interactions having the
same absolute value but varying in sign:

His)=— ) Jus(x)s(y) (1.1)
fx—y=1
One may assume that |J,,| = 1 for nearest neighbor pairs. The choice J, = 1
corresponds to the ferromagnet; this and any other interaction having the
form

J oy = s°(x)s%(y) (1.2)

with some s° € # defines a phase transition model: there are two ground
states, s” and —s°, to which there belong different phases at low temperatures.
If Z is the two or higher dimensional simple cubic lattice, then the
antiferromagnetic potential (J,, = —1) can be given in the form (1.2); it
cannot if the lattice is closed-packed, such as the plane triangular or the fcc
one. Whatever Z is, one always finds infinitely many potentials which cannot
be written as (1.2). If Eq. (1.2) fails to hold for any s° € 4, then J, ,s(x)s(») #1
also for any se #. This implies that even in the ground states the energy of
some of the bonds is at its higher value. The “frustration” is that of the bonds
not able to minimize their energy.

It is easy to imagine that the deviation from (1.2) may lead to the
appearance of two ground states s' and s* differing only in finite non-
interacting sets of sites. If the contours of any se % with respect to s' are
defined as surfaces separating the regions where s = s! from those where s =
—s!, then we realize that s* is a configuration having finite contours the
creation of which costs no energy. Such—let us say—zero-energy contours
trivially do not satisfy the Peierls condition ; they may be present in the spin
configurations in sufficient numbers to destroy the possibility of a phase
transition. We discuss this problem in two theorems. Suppose we know that
with respect to a given ground state the zero-energy contours cannot be
arbitrarily long and that above some length, contours satisfy the Peierls
condition. Then the first theorem asserts the existence of a phase transition. It
might occur that the condition imposed on the contours in this theorem is
satisfied in a way that there are zero-energy contours around each site. This is
hardly possible in two dimensions, our second theorem claims.

After giving the necessary definitions and proving a preparatory
Proposition, we formulate these theorems rigorously at the end of Section 2.
The proof of Theorem 1 is contained in Section 3; Theorem 2 with three
Lemmas is proved in Section 4. A brief discussion is left to Section 5.
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2. DEFINITIONS, NOTATIONS, AND THE
FORMULATION OF THE RESULTS

In our study the lattice is the (¢ > 2)-dimensional simple cubic lattice Z¢;
the extension to other types of lattices needs only a slight modification. x and
y € Z* are nearest neighbors if their Euclidean distance is 1. A pair {x, y} < 7¢
of nearest neighbors is an edge and is denoted by {xy>. The whole set of edges
of Z4is Q. If V, W < 79, then

KV, Wy ={xp>eQ: xeV,yeW}

d(V, W) is the Buclidean distance of ¥ and W < Z°. We sometimes use the
norm

d

x| = Z x|

i=1
Vand W are p-connected if d(V, W) < p; and ¥V and W are connected if they
are l-connected. V is p-connected if ¥, and V, are p-connected in any
decomposition V' =V, u V,; and V is connected if it is 1-connected. The
border of Vis 8(V) =<V, 7* — V). For any A <  the internal region of 4,
not necessarily different from the empty set, is
Intd= |J |4

Vezd ) VycA
V finite

The potential is meaningful if it is restricted to some finite volume V
c 74
Hy(s)=—~ ) Jus(x)s(y) 2.1)
(xyyed V.79

Let Z(V, s%) = {se Z:s=s" on Z* — V}. An s° € # is a ground state in V' if
H,(s°) < H,(s) for any s e Z(V, s°). The state s° is a ground state if it is a
ground state in any finite V < 7.

The border of a configuration s is

Qs) = {<xyp e Q1 Jys(x)s(y) = —1}

Qis a border if Q = Q(s) for some s € #. Suppose that x, y, z, v € Z* form four
edges: {xy>, {yz), {zv), and {(vx). The set of these edges is a square,

{xyzoy = {{xy>, {yz), {zv), {vx)}

(In the language of gauge theory, {xyzv) is a ““plaquette.” When dealing with
other types of lattices, squares are to be replaced by the corresponding
plaquettes.) % is the set of all squares in Z°. The termination of aset 4 < Q is

pA)={ceF: lonA =1or3}
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If {xyzv) € p(Q(s)), then
JeySQIS28(1)5(2) oo S(2)5(0) o S)S(X) = oy Sy Ty S = — 1

Therefore the termination of a border depends only on the interaction. Let
[ Q] denote the set of all subsets of Q. The set of all possible borders is just that
0, < [Q] whose elements have the common termination ¢ < £ Let Q, be
the set of borders of configurations if the potential is ferromagnetic. The
termination of any border in @, is the empty set. Therefore, the symmetric
difference of any border in @, and any one in @, is again in @,. By group
properties, any Q € Q,, can be obtained as

Q=0,:0 2.2)

where Q, is a fixed element of Q, and 0 € Q, is uniquely determined by Q;
A o B is the symmetric difference of 4 and B.
For A,B = @ and A finite let

k(A|B)=|4 — B| — |4 n B| (2.3)
Then, if s € Z(V, s°) and Q(s°) = Q,,
Hy(s) — H,(s°) = 2k(0|Q) 24)

with 8 = Q(s) - Q,. Hereafter, Q, always denotes the border of s°, which is
chosen to be a ground state; d is always an element of Q. Hence, 0 < k(3|Q)
< |4l

Aand B < Q are connected if there existsaoc € # suchthat A no # @
and Bno# @.An A < Q is connected if 4, and A, are connected in any
decomposition A = 4, U A4,. Anelement of Qi3 a contour if any of its actual
partsisnotin Q. In the following, I" always denotes a contour. I is connected
and |I' n o] = 0 or 2 for any ¢ € #. Any ¢ € Q, can be decomposed (though
not uniquely) into the union of pairwise nonintersecting contours. k{01€2,) is
additive in the contours of the decomposition.

Definition. Given a ground state s°, x € Z¢ is a Peierls point if there
exist L and ¢ > 0 such that
k(T1Qq) = || 2.5)

if x € Int and |T'| = L. Now, 2, (s°)is the set of Peierls points for which (2.5)
holds if I} = L; and
P =) 2.6%: 26 = | 2.6
c>0 Lz2d

is the set of all Peierls points.

Let
L(x)= min L (2.6)

xePr.(s°)
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If L(x) > 2d, one can find a contour such that x € Int I" and k(I'|Q2,) = 0. This
we call a zero-energy contour.

Proposition. 2(s°) is either the empty set or it is the whole lattice. If
x e, (s°) and

(1 = c)2d - 2)
C

2
1FI>max{L+2d——2, p(r’x)+4d+z_3}
L

then k(I'|Qg) > 0. Here

p(I, x) = min |y — x|
yelntI”

Proof. If x e Int I'and I = L, then k(I'|Q,) > 0. Suppose that x ¢ Int I’
and put p = p(T, x).Onecan find 6, ,..., §, contours such that |§;| = 2dand I
=3, 0 028,0I is a contour around x: x € Int I"". We have |I"| > L] + 2(p
— 2)(d — 1) and by using the identity

k(8 o 0,1Q) = k(6,|Q) + k(0,/Q < d,) 2.7)

one finds that k(I''|Q,) < k(['|Q,) + 2p(d — 1) + 2. The combination of these
estimates yields

k(€)= €T'|
if

| = max{L —2(p —2)(d— 1),210(‘1’— D+ 1—clp—2)d— 1)}
L

c—¢&
which proves the Proposition.

From the Proposition it immediately follows that L(y) < const x || y|l.

The original Peierls argument " proves the existence of a phase transition
if L(x) = 2d for some x € Z%. A generalization can be found in the following
result:

Theorem 1. In Z“, let us have a potential of the type (1.1). Assume that
one can find a ground state s° for which 2(s°) is not empty. Then there exists a
B, > 0 such that a phase transition occurs for inverse temperatures > f8,.

The most interesting situation described by this theorem—and actually
the only case when the original Peierls argument does not work—is that where
the sites are all Peierls points but there are zero-energy contours around each
site,i.e., 2(s®) = Z?but 2,,(s°) = & . The following theorem shows that in two
dimensions the usual case of a phase transition is somehow the opposite:
2,,(s%) is an infinite set.
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Theorem 2. In two dimensions, consider a potential (1.1) and let s° be
a ground state with regard to it. Suppose that #(s°) is not empty and there
exists a 3 > 0 and a trajectory

X:{XO':O’xl,xZau': xiezza d(x;, x;_1) =1, Ixi‘“’oo}

such that |I'| < 3 for any zero-energy contour I intersecting with {X, X>.
Then 2, (s°) has an infinite connected part. Moreover, Z,(s°) is a set of positive
density: if T = {x e Z?: ||x|| <K}, then

0
T,
liminfm
K- o0 |TK|

>0

We note that the conditions of Theorem 2 are met if s° is a periodic
ground state and 2(s°) is not empty.

3. THE PROOF OF THEOREM 1

According to the Proposition, 0 € 2, (s°) with some L > 2d. We choose a
finite T < Z such that 0e T and, if T is a contour with the property
IntT n {0} N AT # @ then [['| = L. Here AT denotes the set {x € T:d(x,2*
— T)=1}. For any finite V' = T let us consider the restriction of those
ground states with regard to 7 that are equal to s® outside V. This set of
configurations on T'is denoted by G,(s°, T). Plainly, G,(s°, T) = G,.(s°, T)if
V < V'. Moreover, |G,(s°, T)| < 2!"!, whence there is a finite ¥, = Z¢ such
that G,(s°, T) = G(s°, T) independently of V for any ¥V = V. The proof of
the theorem is given in two steps.

(i) G(s°, T) n G(—s°, T) = @. Suppose that this is not true and let
sr€ G(s°, T) n G(—s°, T). Then there exist two ground states s* and s such
that s' = s = s;on Tand s' = —s® = 5° on Z? — V. Moreover, s* = —5° is
also a ground state. Let §; = Q(s%) o Q, for i = 1,2 and 9,, = Q(s') - Q(s?);
then k(5,|Q,) = 0. Take the following decomposition of ¢, into noninter-
secting terms:

o= JT;ud
ji=1
chosen in such a way that 0 e Int [';forj = 1, 2,..., nand 0 ¢ Int ¢'. According
to our choice of T, Int I';nAT =@ and therefore U;=1 I=<T, T). On the
other hand, 8,, = (V — T, Z%) and hence we obtain d;, n ({J1-, [})=2.
Let

X={x0=0,%,X3,.: dx;,x;—y)=1, |x]— o0} < Z¢

be any trajectory. Then [0' n (X, X>|is even and |0,, N (X, X>|is odd: the
first follows from 0 ¢ Int ¢’ and the second from the fact that any decom-
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position of ¢, into the union of nonintersecting contours must have an odd
number of contours encircling the whole 7. Then one obtains that

10,2 2 0) N <X, XD
=01, "X, XD 0" 0 (X, X
=012 N (X, XD+ 10" n (X, XD =200, 1 0" 0 (X, XD

is also an odd number. Therefore, there is at least one I' = d,, o &’ such that
O elIntI'. Furthermore, I n 0, # @ and hence Int I' n AT # o ; this means
that £(I'|Q,) > 0 and k(d,, » &'|Q,) > 0. This is, however, a contradiction,
because from 0, = J, ¢ d,, one gets

k(0,1Q0) = Y k(T 1Q0) + k(0,, ° 0'IQ)
j=1

which is a sum of nonnegative terms and is equal to zero.
(i) Let V' > V, and let p; 0, be the Gibbs probability measure on
A(V,s°) at inverse temperature . Then by the use of Eq. (2.4) we get

Hp,s0,0(8) = Z(B, s°, V)" exp[ —2Pk(8]02)] (3.1)

if se #(V,s°) and 0 = Q(s) - Q,. Suppose that for some € < 1 we can prove
the existence of a f,(¢) such that

tpson(s7¢ G(s°, T)) < € (3.2)
if B> Bo(€). Here sy is the restriction of s € Z(V, s°) to T. Then
tpso(s7€ G T)) > 1 —¢ (3.3)

and
Hg, 50,/ (S € G(°, T) = g so(ST € G(—s°, T))
< g0 (s7E G(s°, T)) <e (3.4)

The first inequality in (3.4) is a consequence of (i). The inequalities (3.3) and
(3.4) together prove the existence of a phase transition for f > B,(¢). To
obtain this result we show, by applying Peierls’ argument to each point of 7,
that (3.2) is true. Let d(s) = Q(s) - Q,; then

{seR(V,s°): s;¢G(s°, 1)}
={seR(V,s°): O(s) > T such that k(I'|Q,) > 0
and IntI'n T2}
= U {se#(V,s°): d(s) 2T} (3.5)

yeT Ta(V,79y:
yelnt I k(F|Q0) > 0
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Let k(T
c(y) = min _[_O-
rkron>o [T
yelnt I

and put ¢ = min,_; c(y). This is positive because every point of T'is a Peierls
point. For every contour occurring in (3.5), kK(I'|Q,) = c|I'|. We write

Auﬂ,sO,V(r) = Z :uﬁ,so,V(S)

seA(V,s%):
a(s)ysT

Now the following inequalities hold :

g0,/ (ST ¢ G(s°, T)) < Z Yo g (l)

veT T:yelntT

KI]|Q0) >0
< Z Z e—Zﬂc|F\ <|T| Z Lr,31ev2,(}cl
yeT I':yelnt T 122d

The upper bound is convergent if f# > log 3/2¢ and goes to zero with
increasing . Therefore, for any ¢ < 3 one can find a f,(¢) < oo such that (3.2)
holds if § > B,(e).

4, THE PROOF OF THEOREM 2
We begin by proving three lemmas.
Lemma 1. In 7% let I'y,..., Ty be finite contours. Then

T ol,0oly=0(IntT, oIntT, = oJnt Ty)
for any N = 1.

Proof. For N = 1 the statement is a direct consequence of the definitions.
We therefore have {x,y} nIntI # 2 and {x,y} —IntI # o if (xp> el
Now let N> 1. Then {xy) €Ty o o I'yiff xy>el’; nTy, T, for
some odd m < N and {xy) ¢ I'; for any other j. This happens iff

{yynInt I #a, {x,y} —IntT; #2

for k =1,2,.., m and either {x, y} = Int I}, or {x, y} = Z* — Int I for any
other j. Assume now that xelIntI’, holds for exactly n values of
ke{l,2,...,m} and x € Int IV holds for exactly p values of j # iy, iy,..., ip-
Then x 1s in the internal region of exactly n + p contours. On the other hand,
y e Int T, _just for the remaining m — n values of k and y € Int I' for the same
j’s as x is; altogether, y is inside m — n + p contours. Sincen + pandm — n
+ p have different parity, we can find one and only one of x and y in
IntI; o - o Int 'y and this is true iff (xy) ed(Int | ¢ o Int ).
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Wesay that aset of contoursI'y ,..., I'yis a minimal ring around the origin
if it has the following properties:

N N
0¢ | JIntI;, Oelnt {JI;, O¢Int{JT; any j=1,2,.., N
i=1 i=1 iEj
In two dimensions, the indices of the contours in a minimal ring can be chosen
in such a way that I;U T}, , is connected forany i=1,2,.., N(N + 1 =1).

From the minimality property it follows that I'; U I'; is not connected if j # i
—1,ii+ 1.

Lemma 2. In 72, letI,,..., 1", be a minimal ring around the origin for
some N > 3. Assume that Int [, o Int I, ; is \/E-connected foreach i; N+ 1
= 1. Then there exists a I’ = I'; o =~ o 'y, such that O eInt I'.

Proof. Let Y, be a trajectory which starts from the origin and
N
Yin U IntI'; e IntT, — {J Int T
j=1 jEi
The minimality of the contour set assures the existence of such a trajectory for
eachi=1,..., N.Now, Y, u Y, divides Z? into two halves. One, called the
(i, i + 1)sector, does not contain any points of Int I';if j #i,i + 1; Y, U ¥,
is considered to belong here. Any trajectory starting from the origin and
proceeding inside the (i, { + 1) sector has an intersection with

Ai=IntoIntI, — ) IntI;

j#EiLi+1
Furthermore, d(A4;, A;,,) =0 because 4, 4;.; n Y,,, # &. Therefore,
any trajectory starting from the origin intersects with

N
) A4i=IntT o oIntl
i=1

from which it follows that 0 e Int I" for some
Feco(Intlyo-olntly)
By Lemma 1, that was just the assertion.
Lemma3. In Z% let I, and I', be zero-energy contours and
IntI'y o IntI', = C, U C,, where either C, = @ or d(C,, C;) > 1. Put
A=CnIntl'; —IntT,, B=C,nIntl'y —IntI, fori=1,2
I=IntT'; nIntT,
Then k(6(4; V1L B,)|Qy) =k(3(4, 0T U B)Q)=0
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Proof. We introduce the notations
x,; = <{4;, B>, Xy =<{A;, 2% — (Int T U Int T',))
x5 =<1, B, X, =<1,2 = (Int T, U IntT,)>
X =<(Z'— (IntT, v IntT,), B,  x¢=<A4;,1>

These eleven sets (i = 1, 2) are pairwise nonintersecting. Using them, we can
write

Ty =X U XU Xyp U Xgp U Xy U Xgp U Xy

Fp=x1; UXy U Xg U X5y U X5y W Xy W Xeo
HA; UT U By)=Xx1; UXjyU Xy U X3 U X, U X5, U X
(A, vl uB)=x;, UXy, U Xy, U X3; U X4 U Xgy U Xg,

Turning to the energies, one finds that
k(0(4y v TU B,)IQg) + k(0(A; U T U By)IQg) = k(I';[Qq) + k(I',|Q) =0

Since £(0}€),) is nonnegative, this proves the assertion.

Using these lemmas, the proof of the theorem is the following.

1. Suppose first that every maximal connected part of 2,(s°) is finite.

(i) According to the Proposition,0 € #, (s°) withsome L > 4and ¢ > 0.
Let

K =max{L + 1, L/2¢c, 9/2¢*} 4.1

and Ty = {x € Z*: | x| <K};thenonecanfinda VV o T finite connected set
such that

VAP ={xeZ*:dx,V)=1} n2(") =0

Therefore, a zero-energy contour I'(x) exists around each point x € V. Now,
|x| > L and 8V is ﬁ~connected; it follows that 0¢ | J,;, Int I'(x) but
0elnt | ) .5 I(x). If {F(x): x € 6V} is not a minimal ring around the origin, it
can be turned into such a set by omitting several contours. Let

SO = (IO TO} « (T(x): xedV}
be a minimal ring and the indices be chosen such that I'® o I''9, is connected
fori=1,.,Ny (No+1=1).
(ii) Assume there exists an i for which Int T¢? o Int ['(%, is not ./2-

connected. We apply Lemma 3 with the identification ', = ', T, = 'Y, . Tt
is plain that

dint T, IntT%,) < /2,  d(Int IO, Int T,) > /2

therefore
d(Int T o Int T'Q, , Int T9,) < /2
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Now, Int I o Int 'Y, = C,; U C,, where C, is chosen to be a maximal
connected set of the symmetric difference such that d(C,, Int I''9,) < \/5
The set C, is not empty and d(C,, C,) > 1. Using the notations of Lemma 3,
we have C; = A, U B,, where

d(4,;,Int %) > /2,  d(B,,IntTY,) <./2

and, plainly, B, # @ . It follows therefore that é(4, v I U B,) is connected
with I'(9, and there is a I'" = 8(4, U I U B,) contour connected with I'(9,
and having zero energy. Moreover, I’ # {9, . For, let us suppose that I"
=T9,; by definition, Int I''Y, = B, U I U B, and in this case B, must be
empty. But C, # & ; therefore A, # . Now we have I'' = (I u B,) and
(A, vl U By)=T"u d(A,), which is a union of nonintersecting terms. This
means that d(I v B, A;) > 1 and hence d(I, A,) > 1. Notice, however, that

T omtl®, =IruvC,uC,=1uC, U4,
is a connected set because I''® N T, # & [otherwise
OO, =TO6TQ, =o(Int TP o Int 1Y)

is connected, which yields Int '® o Int I'(9, to be \/i—connected]. But
d(Cy, A,) > 1 and therefore d(/U C,, 4,) > 1, contradicting the connectivity.
We also have I # I'(® because I''® and I'{Y, are not connected. It is true
that " < TP LT, and, contours having no contour subsets, we get
I["AT® # z. The contours of the set §' =S — {T"9,} U{I["} have the
properties k(I'|Qq) =0 for T'e S’, 0¢| Jroe Int T, but Oelnt | Jrs T’ and
Ures T © Ureor T(X). Let S < S’ be a minimal ring around the origin.
(iii) Then
{ IntI"

FeS®

4.2)

Ur1+

TesS™

U IntT| < | F’+

rest FeS®

This we prove by showing that

Ur,+

() IntT

res’ res’ Tes® Ies© ’

| Intr| <] r’+

It is sufficient to show that
T —TO -9, =T+ Int T, —~Int I —Int IQ, —Int "] > 1
4.3)

If B, =g ,then C, = A4, # @. Also, x¢, = {A4,,])> # & because otherwise
d(A,,1) > 1, which has been excluded previously (I is not empty, due to the
choice of i). But

0 ’ 0 0
X2 NP UTUTY,) =2 and xg2 < I'{9y
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Therefore the first term of (4.3) is positive. If B, # @, thend(B, v I, B,) =1
because of the connectivity of Int I''Y,. Furthermore, either B, = @ or
d(B,, B,) > 1;in both cases d(I, B,) = 1. It follows that B, ¢ Int T'{Y), and,
at the same time,

B, = Int T, and B,n(Intl®uIntl) =g

This assures the positivity of the second term of (4.3).

In (i) we defined a transformation leading from S™® to a new minimal
ring of zero-energy contours S** 1 Inequality (4.2) guarantees that after a
finite number of steps one gets a minimal ring around the origin $™ = §
={T},...,Ty} formed by zero-energy contours with the property that
IntIoInt T, is 2-connected for i=1,2,..,.N (N+1=1). Also,
Ugv=1 I e UxeéVr(x)'

(iv) Let xeZ? and T such that xeInt T, A&(I'|Q,) =0, and let p
=min, g, [|¥ll. Then p > c[fx| — (L + 3)/2]. This follows from the
inequalities

2[(Ix =p) + ] +2< T <

2(1 — 2
( dp+—+L+7
c C

The first is obvious and the second comes from the Proposition. p = p(I’, 0)
with the notations of the Proposition. If x € 6V, then ||x|| = K + 1 and with
the choice (4.1) we get p(I'(x), 0) > Kc/2. As a consequence, if y < s I'(x)
is a contour around the origin, then |y| > 4(Kc — 1) > L. The second
inequality is due to the choice of K and the fact that L > 4.

(v) We now complete the proof of the first assertion of the theorem. |S|
= N = 2;supposefirstthat N=2m,m > 2. Let0, =T, oI o - oIy and &,
=T, 0T 50 0oTy_y; plainly £(0,1Q,) = k(3,|Q) = 0. Also,

k(0. 2 0,JQq0 < 0,.) = k(0,IQ0) — k(0.|Q) = 0

where we applied Eq. (2.7). Therefore, if y < 0, « 4, is a contour around the
origin—and such a contour certainly exists, due to Lemma 2—then
k(y|Qq - 8,) = 0. Consider now the border y-J,. We have OelInty and
0 ¢ Int 0, ; therefore

OcelntyoIntd, =IntyecIntl,cIntT o -oIntly

This means that there exists a contour y’ around the origin such that
Y cyed,=0(IntyoIntlyo--olnt ).
Whence,
0 < k(yIQo) S k(y © 0,1Q0) = k(0.20) + k(y|Qq > 0,) =0

ie., k(y'1Q) = 0. However,y’ = | ) 5y I'(x) and from (iv) one knows that |y'|
> L. This contradicts 0 € Z,(s°).
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Let N = 3, and be odd. The indices of the contours of S can be chosen
such that IntT'; N X' # @ . Here X is the trajectory occurring among the
conditions of the theorem. This time, d, =T, 0ol 0--o,_, and &,
=130 oTy. We have k(3,1Q2,) = 0 and

0 < k(0,1Q0) = k(I'y —TxlQ) — k(I'y nT,|Qp) < 9§

If y" is a contour constructed in the same way as before, then 0 < k(y'|Q,) < §
and |y'l 2 4(Kc — 1) = L. Therefore

kOIQo)/ 1Yl < 9/4Ke — 1) < ¢ (4.4)
which contradicts 0 € 2, (s°). The second inequality of (4.4) comes from (4.1)
and the fact that L > 4.

What remains is N = 2. If 0 € Int(I", o '), this does not differ from the
case of even N.If 0 ¢ Int(I'; - I';) and I, is a contour with length less than 9,
one can modify I'; and get a I',” such that 0 e Int(T'," - I',), [T',’| < &, and
IntI'," = Int I'; . From the latter property it follows that p(I",’, 0) > K¢/2; if
we put d, = I', and 6, = I';’, the proof is the same as for odd N.

2. Now we turn to the proof of the second assertion of the theorem, i.e.,

liminf[|2,(s°) N Tyl/I T[T > 0
M- o

One can easily show that this is true if
liminf[|%,(s°) N 6T,|/I16 T[] > 0 4.5)
where e
0Ty={xeZ? dx,Ty)=1}={xeZ® |x|=M+1}
The proof of (4.5) follows the same lines as that of the first part. Suppose (4.5)
1s not true; then there is a series of integers 0 < K, <K, < - such that
lim [12(s°) N 6T |16 T |1 = 0

Let ¢ < ¢(c — 1/K)/4, where K is given by (4.1). There is an n, = n,(€) such
that |#(s°) N 6Ty | < 4¢K, if n>ny,. We fix an n>n, so large that
K, > K. Let Dy, D,,..., D, be the points of #,(s°)n6T,. The d(D;) are
contours with positive energy, 8(D;) N o(D;) = >, and

Y 10(D)| = 4m < 16¢K,
i=1

For any x € 6T, we choose a I'(x); let this be a zero-energy contour around x
if L(x) > 4 [see Eq. (2.6)] and be a(D,) if x = D,. Starting with this set of
contours, we repeat the procedure described above in part 1. When producing
a minimal ring around the origin, some of the 4(D,) contours may be ruled
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out; if that happens with all of them, the proof is reduced to that of the first
assertion. If the minimal ring contains a 8(D;), it will not be affected by the
transformation [1(ii)]. Let {I';,...,.I'y} be the finally obtained minimal ring
and k(I{|Q,) > 0. This time,

ae = o ri, a(} = [} ri o o l—}
ieven iodd J k(i) >0

k(I'i|Q0)=0 K(T'i]Qo) =0
One obtains that k(6,|Q,) = 0 and 0 < k(3,|Q)) < 16¢K,,. If
ve ) T'x)
xedTk,

is a contour around the origin, constructed from ¢, and 0, in the same way
as in part 1(v), then |y'| = 4(K,c — 1) = L and 0 < k(y|€) < 16eK,,. We
therefore have

n

k(i) _ 4k,
K =1

<c

which contradicts 0 e P, (s°).

5. DISCUSSION

The search for models of spin-glasses has given rise to a large body of
work on the thermodynamic properties of systems with a frustration
potential. We do not wish to review this field, nor to discuss the properties of
spin-glasses, but only mention that many works conclude with some
negative statement concerning the existence of a suitable frustration model in
two (and probably in three) dimensions. The two-dimensional *“odd model”
proposed by Villain® is a model without a phase transition; André ez al.,'” in
a study with periodic Ising frustration potentials in d = 2, noticed that their
system, though undergoing a phase transition, always contained infinite
connected sets of ferro- or antiferromagnetically ordered spins in the ground
states. In “true”” models of spin-glasses the interactions J,, are considered to
be random variables. A series of Monte Carlo studies with such potentials®*
also suggested the absence of spin-glass behavior.

The motivation for the present work was to throw some light on the
background of this failure. Though the comparison of the present study with
the above work is not immediate, we think that some of the features of our
results are rather suggestive. If spin-glasses have to be described by phase
transition models, the dominance of free blocks, i.e., zero-energy contours,
can make them different from magnetically ordered materials. According to
our second theorem, however, zero-energy contours do not play a dominant
role in two-dimensional phase transition models.
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